A New Way of Looking at Distributional Estimates; Applications for the Bilinear Hilbert Transform

نویسندگان

  • DMITRIY BILYK
  • LOUKAS GRAFAKOS
چکیده

Distributional estimates for the Carleson operator acting on characteristic functions of measurable sets of finite measure were obtained by Hunt [12]. In this article we describe a simple method that yields such estimates for general operators acting on one or more functions. As an application we discuss how distributional estimates are obtained for the linear and bilinear Hilbert transform. These distributional estimates show that the square root of the bilinear Hilbert transform is exponentially integrable over compact sets. They also provide restricted type endpoint results on products of Lebesgue spaces where one exponent is 1 or the sum of the reciprocal of the exponents is 3/2. The proof of the distributional estimates for the bilinear Hilbert transform rely on an improved energy estimate for characteristic functions with respect to sets of tiles from which appropriate exceptional subsets have been removed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distributional Estimates for the Bilinear Hilbert Transform

We obtain size estimates for the distribution function of the bilinear Hilbert transform acting on a pair of characteristic functions of sets of finite measure, that yield exponential decay at infinity and blowup near zero to the power −2/3 (modulo some logarithmic factors). These results yield all known L bounds for the bilinear Hilbert transform and provide new restricted weak type endpoint e...

متن کامل

Sobolev space estimates for a class of bilinear pseudodifferential operators lacking symbolic calculus

The reappearance of a sometimes called exotic behavior for linear and multilinear pseudodifferential operators is investigated. The phenomenon is shown to be present in a recently introduced class of bilinear pseudodifferential operators which can be seen as more general variable coefficient counterparts of the bilinear Hilbert transform and other singular bilinear multipliers operators. The un...

متن کامل

New Uniform Bounds for a Walsh Model of the Bilinear Hilbert Transform

Abstract. We prove old and new L bounds for the quartile operator, a Walsh model of the bilinear Hilbert transform, uniformly in the parameter that models degeneration of the bilinear Hilbert transform. We obtain the full range of exponents that can be expected from known bounds in the degenerate and non-degenerate cases. For the new estimates with exponents p close to 1 the argument relies on ...

متن کامل

Uniform estimates for some paraproducts

We establish L × L to L estimates for some general paraproducts, which arise in the study of the bilinear Hilbert transform along curves.

متن کامل

Weighted Estimates for Bilinear Fractional Integral Operators and Their Commutators

In this paper we will prove several weighted estimates for bilinear fractional integral operators and their commutators with BMO functions. We also prove maximal function control theorem for these operators, that is, we prove the weighted Lp norm is bounded by the weighted Lp norm of a natural maximal operator when the weight belongs to A∞. As a corollary we are able to obtain new weighted esti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005